5,206 research outputs found

    Proper toric maps over finite fields

    Get PDF

    The perverse filtration and the Lefschetz hyperplane theorem, II

    No full text

    Static Einstein-Maxwell Solutions in 2+1 dimensions

    Get PDF
    We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation q0=i q2,q2=i q0,α⇌γq_0=i\,q_2,q_2=i\,q_0,\alpha \rightleftharpoons \gamma. It is shown that the magnetic solution obtained with the help of the procedure used in Ref.~\cite{Cataldo}, can be obtained from the static BTZ solution using an appropriate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied and their corresponding solutions found.Comment: 8 pages, LaTeX, no figures, to appear in Physical Review

    Multimode model for an atomic Bose-Einstein condensate in a ring-shaped optical lattice

    Get PDF
    We study the population dynamics of a ring-shaped optical lattice with a high number of particles per site and a low, below ten, number of wells. Using a localized on-site basis defined in terms of stationary states, we were able to construct a multiple-mode model depending on relevant hopping and on-site energy parameters. We show that in case of two wells, our model corresponds exactly to the latest improvement of the two-mode model. We derive a formula for the self-trapping period, which turns out to be chiefly ruled by the on-site interaction energy parameter. By comparing to time dependent Gross-Pitaevskii simulations, we show that the multimode model results can be enhanced in a remarkable way over all the regimes by only renormalizing such a parameter. Finally, using a different approach which involves only the ground state density, we derive an effective interaction energy parameter that shows to be in accordance with the renormalized one.Comment: 18 pages, 12 figure

    Memory effects in superfluid vortex dynamics

    Full text link
    The dissipative dynamics of a vortex line in a superfluid is investigated within the frame of a non-Markovian quantal Brownian motion model. Our starting point is a recently proposed interaction Hamiltonian between the vortex and the superfluid quasiparticle excitations, which is generalized to incorporate the effect of scattering from fermion impurities (3^3He atoms). Thus, a non-Markovian equation of motion for the mean value of the vortex position operator is derived within a weak-coupling approximation. Such an equation is shown to yield, in the Markovian and elastic scattering limits, a 3^3He contribution to the longitudinal friction coefficient equivalent to that arising from the Rayfield-Reif formula. Simultaneous Markov and elastic scattering limits are found, however, to be incompatible, since an unexpected breakdown of the Markovian approximation is detected at low cyclotron frequencies. Then, a non-Markovian expression for the longitudinal friction coefficient is derived and computed as a function of temperature and 3^3He concentration. Such calculations show that cyclotron frequencies within the range 0.01−-0.03 ps−1^{-1} yield a very good agreement to the longitudinal friction figures computed from the Iordanskii and Rayfield-Reif formulas for pure 4^4He, up to temperatures near 1 K. A similar performance is found for nonvanishing 3^3He concentrations, where the comparison is also shown to be very favorable with respect to the available experimental data. Memory effects are shown to be weak and increasing with temperature and concentration.Comment: Incidence of radiation damping analyzed in Sections I and IV C (2 references added). Derivation of the vortex equation of motion moved to an appendix; other minor changes about style and presentation. 13 pages, no figures. Accepted for publication in the Journal of Low Temperature Physic

    Dynamics in asymmetric double-well condensates

    Full text link
    The dynamics of Bose-Einstein condensates in asymmetric double-wells is studied. We construct a two-mode model and analyze the properties of the corresponding phase-space diagram, showing in particular that the minimum of the phase-space portrait becomes shifted from the origin as a consequence of the nonvanishing overlap between the ground and excited states from which the localized states are derived. We further incorporate effective interaction corrections in the set of two-mode model parameters. Such a formalism is applied to a recent experimentally explored system, which is confined by a toroidal trap with radial barriers forming an arbitrary angle between them. We confront the model results with Gross-Pitaevskii simulations for various angle values finding a very good agreement. We also analyze the accuracy of a previously employed simple model for moving barriers, exploring a possible improvement that could cover a wider range of trap asymmetries.Comment: 15 pages, 11 figure

    Dark soliton collisions in a toroidal Bose-Einstein condensate

    Get PDF
    We study the dynamics of two gray solitons in a Bose-Einstein condensate confined by a toroidal trap with a tight confinement in the radial direction. Gross-Pitaevskii simulations show that solitons can be long living objects passing through many collisional processes. We have observed quite different behaviors depending on the soliton velocity. Very slow solitons, obtained by perturbing the stationary solitonic profile, move with a constant angular velocity until they collide elastically and move in the opposite direction without showing any sign of lowering their energy. In this case the density notches are always well separated and the fronts are sharp and straight. Faster solitons present vortices around the notches, which play a central role during the collisions. We have found that in these processes the solitons lose energy, as the outgoing velocity turns out to be larger than the incoming one. To study the dynamics, we model the gray soliton state with a free parameter that is related to the soliton velocity. We further analyze the energy, soliton velocity and turning points in terms of such a free parameter, finding that the main features are in accordance with the infinite one-dimensional system.Comment: 15 pages, 11 figures. Accepted in PR

    Two-mode effective interaction in a double-well condensate

    Get PDF
    We investigate the origin of a disagreement between the two-mode model and the exact Gross-Pitaevskii dynamics applied to double-well systems. In general this model, even in its improved version, predicts a faster dynamics and underestimates the critical population imbalance separating Josephson and self-trapping regimes. We show that the source of this mismatch in the dynamics lies in the value of the on-site interaction energy parameter. Using simplified Thomas-Fermi densities, we find that the on-site energy parameter exhibits a linear dependence on the population imbalance, which is also confirmed by Gross-Pitaevskii simulations. When introducing this dependence in the two-mode equations of motion, we obtain a reduced interaction energy parameter which depends on the dimensionality of the system. The use of this new parameter significantly heals the disagreement in the dynamics and also produces better estimates of the critical imbalance.Comment: 5 pages, 4 figures, accepted in PR
    • …
    corecore